Detergent-extracted Volvox model exhibits an anterior-posterior gradient in flagellar Ca2+ sensitivity.
نویسندگان
چکیده
Volvox rousseletii is a multicellular spheroidal green alga containing ∼5,000 cells, each equipped with two flagella (cilia). This organism shows striking photobehavior without any known intercellular communication. To help understand how the behavior of flagella is regulated, we developed a method to extract the whole organism with detergent and reactivate its flagellar motility. Upon addition of ATP, demembranated flagella (axonemes) in the spheroids actively beat and the spheroids swam as if they were alive. Under Ca2+-free conditions, the axonemes assumed planar and asymmetrical waveforms and beat toward the posterior pole, as do live spheroids in the absence of light stimulation. In the presence of 10-6 M Ca2+, however, most axonemes beat three-dimensionally toward the anterior pole, similar to flagella in photostimulated live spheroids. This Ca2+-dependent change in flagellar beating direction was more conspicuous near the anterior pole of the spheroid, but was not observed near the posterior pole. This anterior-posterior gradient of flagellar Ca2+ sensitivity may explain the mechanism of V. rousseletii photobehavior.
منابع مشابه
Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii
When Chlamydomonas cells are deflagellated by pH shock or mechanical shear the nucleus rapidly moves toward the flagellar basal apparatus at the anterior end of the cell. During flagellar regeneration the nucleus returns to a more central position within the cell. The nucleus is connected to the flagellar apparatus by a system of fibers, the flagellar roots (rhizoplasts), which undergo a dramat...
متن کاملThe Flagellar Photoresponse in Volvox Species (volvocaceae, Chlorophyceae)1.
Steering their swimming direction toward the light is crucial for the viability of Volvox colonies, the larger members of the volvocine algae. While it is known that this phototactic steering is achieved by a difference in behavior of the flagella on the illuminated and shaded sides, conflicting reports suggest that this asymmetry arises either from a change in beating direction or a change in ...
متن کاملMetachronal waves in the flagellar beating of Volvox and their hydrodynamic origin
Groups of eukaryotic cilia and flagella are capable of coordinating their beating over large scales, routinely exhibiting collective dynamics in the form of metachronal waves. The origin of this behavior--possibly influenced by both mechanical interactions and direct biological regulation--is poorly understood, in large part due to a lack of quantitative experimental studies. Here we characteri...
متن کاملActomyosin contraction of the posterior hemisphere is required for inversion of the Volvox embryo.
During inversion of a Volvox embryo, a series of cell shape changes causes the multicellular sheet to bend outward, and propagation of the bend from the anterior to the posterior pole eventually results in an inside-out spherical sheet of cells. We use fluorescent and electron microscopy to study the behavior of the cytoskeleton in cells undergoing shape changes. Microtubules are aligned parall...
متن کاملBasal body reorientation mediated by a Ca2+-modulated contractile protein
A rapid, Ca2+-dependent change in the angle between basal bodies (up to 180 degrees) is associated with light-induced reversal of swimming direction (the "photophobic" response) in a number of flagellated green algae. In isolated, detergent-extracted, reactivated flagellar apparatus complexes of Spermatozopsis similis, axonemal beat form conversion to the symmetrical/undulating flagellar patter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 115 5 شماره
صفحات -
تاریخ انتشار 2018